import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data
#载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次100张照片 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #定义两个placeholder x = tf.placeholder(tf.float32,[None,784]) y = tf.placeholder(tf.float32,[None,10]) #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元 W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) prediction = tf.nn.softmax(tf.matmul(x,W)+b) #二次代价函数 # loss = tf.reduce_mean(tf.square(y-prediction)) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) #使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量 init = tf.global_variables_initializer() #结果存放在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置 #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(init) for epoch in range(11): for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys}) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc)) #保存模型 saver.save(sess,'net/my_net.ckpt')
模型保存好后,硬盘上的文件为:
注:上面的方法只保存了模型的参数,并没有保存模型的结构,因此用该方法载入模型时,需要重建模型的结构;
tensorflow模型的保存和载入不能是在同一文件中,且输入模型时,保存模型的那个文件必须处于关闭状态;
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data
#载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次100张照片 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #定义两个placeholder x = tf.placeholder(tf.float32,[None,784]) y = tf.placeholder(tf.float32,[None,10]) #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元 W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) prediction = tf.nn.softmax(tf.matmul(x,W)+b) #二次代价函数 # loss = tf.reduce_mean(tf.square(y-prediction)) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) #使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量 init = tf.global_variables_initializer() #结果存放在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置 #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(init) print('初始化随机权值模型的预测结果为:' , sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})) saver.restore(sess,'net/my_net.ckpt') print('载入训练好的模型的预测结果为:' , sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))
placeholder和预测值都需要预先设置一个name
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data
#载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次100张照片 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #定义两个placeholder x = tf.placeholder(tf.float32,[None,784],name='x-input') y = tf.placeholder(tf.float32,[None,10]) #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元 W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) prediction = tf.nn.softmax(tf.matmul(x,W)+b, name='output') #二次代价函数 # loss = tf.reduce_mean(tf.square(y-prediction)) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) #使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量 init = tf.global_variables_initializer() #结果存放在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置 #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess: sess.run(init) for epoch in range(11): for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys}) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc)) #保存模型参数和结构 output_graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, output_node_names=['output']) # 保存模型到目录下的model文件夹中 with tf.gfile.FastGFile('./models/tfmodel.pb',mode='wb') as f: f.write(output_graph_def.SerializeToString())
硬盘上的文件为:
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data
#载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #定义一个placeholder y = tf.placeholder(tf.float32,[None,10]) #载入模型 with tf.gfile.FastGFile('./models/tfmodel.pb', 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) tf.import_graph_def(graph_def, name='') with tf.Session() as sess: output = sess.graph.get_tensor_by_name('output:0') #结果存放在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(output,1))#argmax返回一维张量中最大的值所在的位置 #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) print(sess.run(accuracy,feed_dict={'x-input:0':mnist.test.images,y:mnist.test.labels}))