利用tensorboard可视化时的步骤:
1)在代码中定义命名空间tf.name_scope(),并将需要可视化东西,如变量、网络层等放到命名空间代码的下一层;
2)tf.summary.FileWriter('logs/',sess.graph),将可视化的文件写入硬盘中的某个目录下面;
3)windows环境下,在命令行下,先切换到可视化文件的所在盘符,然后再执行D:\>tensorboard --logdir=D:\pikaqiu\logs,logdir后面填写可视化文件的保存目录;
4)将命令行下生成的可视化地址粘贴到google浏览器查看可视化的内容,浏览器最好用google,其它的可能会产生错误;
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次的大小 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #命名空间 with tf.name_scope('input'): #定义两个placeholder x = tf.placeholder(tf.float32,[None,784],name='x-input') y = tf.placeholder(tf.float32,[None,10],name='y-input') #外层命名空间 with tf.name_scope('layer'): #嵌套的命名空间 with tf.name_scope('wights'): W = tf.Variable(tf.zeros([784,10]),name='W') with tf.name_scope('biases'): b = tf.Variable(tf.zeros([10]),name='b') with tf.name_scope('wx_plus_b'): wx_plus_b = tf.matmul(x,W) + b with tf.name_scope('softmax'): prediction = tf.nn.softmax(wx_plus_b) #二次代价函数 # loss = tf.reduce_mean(tf.square(y-prediction)) with tf.name_scope('loss'): loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) with tf.name_scope('train'): #使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量 init = tf.global_variables_initializer() with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): #结果存放在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置 with tf.name_scope('accuracy'): #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess: sess.run(init) #可视化文件生成目录 writer = tf.summary.FileWriter('logs/',sess.graph) for epoch in range(1): for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys}) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
上图中,红色方框里的就是可视化文件的查看地址;
双击网络结构中方框,可以查看该结构底层的具体结构:
多次生成可视化文件时,可能会产生上一次变量缓存在内存中,从而导致会显示多个图的问题,此时可以先清除程序的所有运行结果,并删除掉可视化文件,再重新运行程序,产生新的可视化文件;
tensorboard中,可以将每个命名空间,通过点击鼠标右键将其分离出去后单独查看,也可将单独分离出去后的命令空间合并到网络中查看;
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次的大小 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #参数概要 def variable_summaries(var): with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean)#平均值 with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev)#标准差 tf.summary.scalar('max', tf.reduce_max(var))#最大值 tf.summary.scalar('min', tf.reduce_min(var))#最小值 tf.summary.histogram('histogram', var)#直方图 #命名空间 with tf.name_scope('input'): #定义两个placeholder x = tf.placeholder(tf.float32,[None,784],name='x-input') y = tf.placeholder(tf.float32,[None,10],name='y-input') with tf.name_scope('layer'): #创建一个简单的神经网络 with tf.name_scope('wights'): W = tf.Variable(tf.zeros([784,10]),name='W') variable_summaries(W) with tf.name_scope('biases'): b = tf.Variable(tf.zeros([10]),name='b') variable_summaries(b) with tf.name_scope('wx_plus_b'): wx_plus_b = tf.matmul(x,W) + b with tf.name_scope('softmax'): prediction = tf.nn.softmax(wx_plus_b) #二次代价函数 # loss = tf.reduce_mean(tf.square(y-prediction)) with tf.name_scope('loss'): loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) tf.summary.scalar('loss',loss) with tf.name_scope('train'): #使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量 init = tf.global_variables_initializer() with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): #结果存放在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置 with tf.name_scope('accuracy'): #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) tf.summary.scalar('accuracy',accuracy) #合并所有的summary merged = tf.summary.merge_all() with tf.Session() as sess: sess.run(init) writer = tf.summary.FileWriter('logs/',sess.graph) for epoch in range(51): for batch in range(n_batch): batch_xs,batch_ys = mnist.train.next_batch(batch_size) summary,_ = sess.run([merged,train_step],feed_dict={x:batch_xs,y:batch_ys}) writer.add_summary(summary,epoch) acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
上面的代码运行完成后,tensorboard中的视图为:
注:上图,红色方框里的按钮可以调节曲线的平滑程序,默认为0.6,为0时,为原始的真实曲线,即accuracy下面的那张图中颜色较浅的曲线;
注:上图为损失函数的曲线,该曲线如果振荡得太厉害,说明学习率的设置过高;
注:上图为偏置值的分布图,颜色的深浅代表分布的高低,颜色越深说明该区域的分布越高;
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.contrib.tensorboard.plugins import projector #载入数据集 mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) #运行次数 max_steps = 1001 #图片数量 image_num = 3000 #文件路径 DIR = "D:/pikaqiu/" #定义会话 sess = tf.Session() #载入图片 embedding = tf.Variable(tf.stack(mnist.test.images[:image_num]), trainable=False, name='embedding') #参数概要 def variable_summaries(var): with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean)#平均值 with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev)#标准差 tf.summary.scalar('max', tf.reduce_max(var))#最大值 tf.summary.scalar('min', tf.reduce_min(var))#最小值 tf.summary.histogram('histogram', var)#直方图 #命名空间 with tf.name_scope('input'): #这里的none表示第一个维度可以是任意的长度 x = tf.placeholder(tf.float32,[None,784],name='x-input') #正确的标签 y = tf.placeholder(tf.float32,[None,10],name='y-input') #显示图片 with tf.name_scope('input_reshape'): #tf.reshape函数会将x转换成28行28列的数据,-1表示任意值; #[-1, 28, 28, 1]最后一个1表示维度,黑白图片的维度为1,彩色的为3 image_shaped_input = tf.reshape(x, [-1, 28, 28, 1]) tf.summary.image('input', image_shaped_input, 10) with tf.name_scope('layer'): #创建一个简单神经网络 with tf.name_scope('weights'): W = tf.Variable(tf.zeros([784,10]),name='W') variable_summaries(W) with tf.name_scope('biases'): b = tf.Variable(tf.zeros([10]),name='b') variable_summaries(b) with tf.name_scope('wx_plus_b'): wx_plus_b = tf.matmul(x,W) + b with tf.name_scope('softmax'): prediction = tf.nn.softmax(wx_plus_b) with tf.name_scope('loss'): #交叉熵代价函数 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)) tf.summary.scalar('loss',loss) with tf.name_scope('train'): #使用梯度下降法 train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss) #初始化变量mnist_10k_sprite sess.run(tf.global_variables_initializer()) with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): #结果存放在一个布尔型列表中 correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置 with tf.name_scope('accuracy'): #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))#把correct_prediction变为float32类型 tf.summary.scalar('accuracy',accuracy) #产生metadata文件 if tf.gfile.Exists(DIR + 'projector/projector/metadata.tsv'): tf.gfile.DeleteRecursively(DIR + 'projector/projector/metadata.tsv') with open(DIR + 'projector/projector/metadata.tsv', 'w') as f: labels = sess.run(tf.argmax(mnist.test.labels[:],1)) for i in range(image_num): f.write(str(labels[i]) + '\n') #合并所有的summary merged = tf.summary.merge_all() projector_writer = tf.summary.FileWriter(DIR + 'projector/projector',sess.graph) saver = tf.train.Saver() config = projector.ProjectorConfig() embed = config.embeddings.add() embed.tensor_name = embedding.name embed.metadata_path = DIR + 'projector/projector/metadata.tsv' embed.sprite.image_path = DIR + 'projector/data/mnist_10k_sprite.png' embed.sprite.single_image_dim.extend([28,28]) projector.visualize_embeddings(projector_writer,config) for i in range(max_steps): #每个批次100个样本 batch_xs,batch_ys = mnist.train.next_batch(100) run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() summary,_ = sess.run([merged,train_step],feed_dict={x:batch_xs,y:batch_ys},options=run_options,run_metadata=run_metadata) projector_writer.add_run_metadata(run_metadata, 'step%03d' % i) projector_writer.add_summary(summary, i) if i%100 == 0: acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}) print ("Iter " + str(i) + ", Testing Accuracy= " + str(acc)) #保存训练好的模型 saver.save(sess, DIR + 'projector/projector/a_model.ckpt', global_step=max_steps) projector_writer.close() sess.close()
注:上面的代码执行前需要将一张图片放置在data目录下;
图片的部分截取图为:
tensorboard运行的效果为:
注:上图,红色方框里可以调节训练参数和每类图片的颜色;