import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import metrics,linear_model
from sklearn.neural_network import BernoulliRBM
from sklearn.datasets import load_digits
from sklearn.pipeline import Pipeline
digits = load_digits()#载入数据
X = digits.data#数据
Y = digits.target#标签
#查看前30个图像
print(digits.data.shape)
rows = 3
cols = 10
fig1 , ax1 = plt.subplots(rows ,cols ,figsize=(10 , 5))
# 标签字体
fontdict = {'fontsize': 20,'fontweight' : 6,'verticalalignment': 'baseline','horizontalalignment': 'center'}
for j in range(rows):
for i in range(cols):
ax1[j][i].imshow(digits.images[j*cols+i].reshape(8 , 8))
ax1[j][i].axis('off')
ax1[j][i].set_title(Y[j*cols+i] , fontdict = fontdict)
#输入数据归一化
X -= X.min()
X /= X.max()
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,test_size=0.2,random_state=0)
#创建RBM模型
logistic = linear_model.LogisticRegression()
rbm = BernoulliRBM(random_state=0, verbose=True)
classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)])

#设置学习率
rbm.learning_rate = 0.06
#设置迭代次数
rbm.n_iter = 20
#设置隐藏层单元
rbm.n_components = 200
logistic.C = 6000.0
#训练模型
classifier.fit(X_train, Y_train)

print("Logistic regression using RBM features:\n%s\n" % (
metrics.classification_report(
Y_test,
classifier.predict(X_test))))
